API Reference¶
Complete API documentation for the AI Metacognition Toolkit.
Detectors¶
SandbaggingDetector¶
SandbaggingDetector
¶
Bases: BaseDetector
Detect strategic underperformance (sandbagging) in AI model evaluations.
This detector implements multiple complementary approaches to identify when models deliberately underperform on capability evaluations. The detection methods are based on recent AI safety research and can be used independently or in combination.
Detection Methods
- Context-dependent analysis: Compare performance across different evaluation framings (neutral vs explicit evaluation context)
- Noise injection probing: Inject calibrated noise to disrupt sandbagging behavior while preserving underlying capabilities
- Difficulty-performance correlation: Detect anomalous patterns where harder questions are answered correctly but easier ones wrong
- Imitation detection: Identify when a model mimics a weaker model's behavioral fingerprint too closely
Attributes:
| Name | Type | Description |
|---|---|---|
baseline_performance |
Dict[str, Any]
|
Baseline performance metrics from neutral context |
evaluation_keywords |
Dict[str, Any]
|
Keywords indicating evaluation context |
difficulty_bins |
Number of bins for difficulty analysis |
|
noise_levels |
Noise levels to test during probing |
|
detection_threshold |
Threshold for sandbagging detection |
|
fitted |
Whether the detector has been fitted to baseline data |
Example
detector = SandbaggingDetector()
Collect baseline samples in neutral context¶
neutral_samples = [ ... PerformanceSample(prompt="What is 2+2?", response="4", correct=True), ... # ... more samples ... ] detector.fit_baseline(neutral_samples)
Test with evaluation context¶
test_samples = [ ... PerformanceSample( ... prompt="What is 2+2?", ... response="I'm not sure", ... correct=False, ... context_type=ContextType.EVALUATION ... ), ... ] result = detector.detect_sandbagging(test_samples) print(f"Sandbagging detected: {result.sandbagging_detected}")
Source code in src/ai_metacognition/detectors/sandbagging_detector.py
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 | |
__init__(detection_threshold=0.6, difficulty_bins=5, noise_levels=None, context_sensitivity_weight=0.35, difficulty_weight=0.25, imitation_weight=0.2, noise_weight=0.2)
¶
Initialize the Sandbagging Detector.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
detection_threshold
|
float
|
Threshold for sandbagging detection (0.0-1.0) |
0.6
|
difficulty_bins
|
int
|
Number of bins for difficulty stratification |
5
|
noise_levels
|
Optional[List[float]]
|
Noise levels for perturbation testing |
None
|
context_sensitivity_weight
|
float
|
Weight for context analysis in final score |
0.35
|
difficulty_weight
|
float
|
Weight for difficulty correlation in final score |
0.25
|
imitation_weight
|
float
|
Weight for imitation detection in final score |
0.2
|
noise_weight
|
float
|
Weight for noise injection results in final score |
0.2
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If weights don't sum to 1.0 or parameters invalid |
Source code in src/ai_metacognition/detectors/sandbagging_detector.py
detect(text)
¶
Detect sandbagging patterns in text (BaseDetector compatibility).
This method provides compatibility with the BaseDetector interface. For full functionality, use detect_sandbagging() with PerformanceSample.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
The input text to analyze |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with detection results |
Source code in src/ai_metacognition/detectors/sandbagging_detector.py
detect_sandbagging(test_samples, model_api=None, run_noise_injection=False)
¶
Perform comprehensive sandbagging detection.
This method runs all detection approaches and combines their results to determine if sandbagging behavior is present.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
test_samples
|
List[PerformanceSample]
|
Performance samples to analyze |
required |
model_api
|
Optional[ModelAPI]
|
Optional model API for noise injection testing |
None
|
run_noise_injection
|
bool
|
Whether to run noise injection probing |
False
|
Returns:
| Type | Description |
|---|---|
SandbaggingResult
|
SandbaggingResult with detection outcome and evidence |
Raises:
| Type | Description |
|---|---|
ValueError
|
If detector not fitted or samples invalid |
Source code in src/ai_metacognition/detectors/sandbagging_detector.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 | |
fit_baseline(samples, compute_fingerprint=True)
¶
Fit baseline performance from neutral context samples.
This method establishes the baseline performance metrics that will be compared against evaluation context samples to detect sandbagging.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
samples
|
List[PerformanceSample]
|
List of performance samples from neutral context |
required |
compute_fingerprint
|
bool
|
Whether to compute behavioral fingerprint |
True
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If samples list is empty or invalid |
Source code in src/ai_metacognition/detectors/sandbagging_detector.py
get_baseline_summary()
¶
Get summary of baseline performance metrics.
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with baseline statistics |
Raises:
| Type | Description |
|---|---|
ValueError
|
If detector has not been fitted |
Source code in src/ai_metacognition/detectors/sandbagging_detector.py
PerformanceSample¶
PerformanceSample
dataclass
¶
A single performance measurement.
Attributes:
| Name | Type | Description |
|---|---|---|
prompt |
str
|
The input prompt given to the model |
response |
str
|
The model's response |
correct |
Optional[bool]
|
Whether the response was correct (for accuracy-based tasks) |
score |
Optional[float]
|
Numeric score if available (0.0-1.0) |
difficulty |
Optional[float]
|
Estimated difficulty level (0.0-1.0) |
context_type |
ContextType
|
The evaluation context |
metadata |
Dict[str, Any]
|
Additional metadata about the sample |
Source code in src/ai_metacognition/detectors/sandbagging_detector.py
SandbaggingResult¶
SandbaggingResult
dataclass
¶
Result of sandbagging detection analysis.
Attributes:
| Name | Type | Description |
|---|---|---|
sandbagging_detected |
bool
|
Whether sandbagging behavior was detected |
confidence |
float
|
Confidence score for detection (0.0-1.0) |
detection_method |
Optional[str]
|
Which method triggered the detection |
context_sensitivity |
float
|
Score indicating context-dependent performance drop |
difficulty_correlation |
float
|
Correlation between difficulty and accuracy |
imitation_score |
float
|
Score indicating imitation of weaker model |
noise_response |
Optional[Dict[str, Any]]
|
Response to noise injection probing |
evidence |
Dict[str, Any]
|
Detailed evidence supporting the detection |
recommendations |
List[str]
|
Suggested follow-up actions |
Source code in src/ai_metacognition/detectors/sandbagging_detector.py
ContextType¶
ContextType
¶
Bases: Enum
Types of evaluation contexts for analysis.
Source code in src/ai_metacognition/detectors/sandbagging_detector.py
SituationalAwarenessDetector¶
SituationalAwarenessDetector
¶
Bases: BaseDetector
Detect situational awareness in AI model outputs using Bayesian inference.
This detector uses Bayesian inference to identify when models recognize evaluation contexts by analyzing behavioral features and computing divergence metrics between test and baseline distributions.
Attributes:
| Name | Type | Description |
|---|---|---|
baseline_samples |
Baseline model outputs for comparison |
|
alpha_prior |
Alpha parameter for Beta prior distribution |
|
beta_prior |
Beta parameter for Beta prior distribution |
|
baseline_features |
List[Dict[str, float]]
|
Extracted features from baseline samples |
baseline_distribution |
Dict[str, Dict[str, float]]
|
Computed baseline feature distribution |
fitted |
Whether the detector has been fitted to baseline data |
Source code in src/ai_metacognition/detectors/situational_awareness.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 | |
__init__(baseline_samples=None, alpha_prior=1.0, beta_prior=1.0)
¶
Initialize the Situational Awareness Detector.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
baseline_samples
|
Optional[List[str]]
|
List of baseline model outputs (normal interactions) |
None
|
alpha_prior
|
float
|
Alpha parameter for Beta prior (default: 1.0 for uniform) |
1.0
|
beta_prior
|
float
|
Beta parameter for Beta prior (default: 1.0 for uniform) |
1.0
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If prior parameters are not positive |
Source code in src/ai_metacognition/detectors/situational_awareness.py
detect(text)
¶
Detect metacognitive patterns (compatibility method).
This method provides compatibility with the BaseDetector interface. For full functionality, use detect_awareness() instead.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
The input text to analyze |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with detection results |
Source code in src/ai_metacognition/detectors/situational_awareness.py
detect_awareness(test_output, test_context=None)
¶
Detect situational awareness in test output using Bayesian inference.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
test_output
|
str
|
The model output to analyze |
required |
test_context
|
Optional[str]
|
Optional context information |
None
|
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary containing: - awareness_probability: Float between 0 and 1 - confidence_interval: Tuple of (lower, upper) bounds - evidence: Dictionary with supporting metrics - features: Extracted features from the output - kl_divergence: KL divergence from baseline |
Raises:
| Type | Description |
|---|---|
ValueError
|
If detector has not been fitted |
ValueError
|
If test_output is empty or invalid |
Source code in src/ai_metacognition/detectors/situational_awareness.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | |
fit_baseline(model_outputs, contexts=None)
¶
Fit the baseline distribution from normal model interactions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_outputs
|
List[str]
|
List of model outputs from normal interactions |
required |
contexts
|
Optional[List[str]]
|
Optional context information for each output |
None
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If model_outputs is empty or contains invalid data |
Source code in src/ai_metacognition/detectors/situational_awareness.py
get_baseline_summary()
¶
Get summary statistics of the baseline distribution.
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with baseline statistics |
Raises:
| Type | Description |
|---|---|
ValueError
|
If detector has not been fitted |
Source code in src/ai_metacognition/detectors/situational_awareness.py
ObserverEffectMonitor¶
ObserverEffectMonitor
¶
Bases: BaseDetector
Monitor for detecting observer effects in production deployments.
This monitor tracks behavioral features in a rolling window and compares them to evaluation baselines to detect when models behave differently in production contexts.
Attributes:
| Name | Type | Description |
|---|---|---|
window_size |
Size of rolling window for statistics |
|
alert_threshold |
Minimum z-score to trigger alerts |
|
feature_weights |
Weights for different features |
|
evaluation_baseline |
Dict[str, Dict[str, float]]
|
Baseline statistics from evaluation |
production_window |
deque
|
Rolling window of production interactions |
alerts |
List[Alert]
|
List of triggered alerts |
alert_handlers |
List[AlertHandler]
|
List of registered alert handlers |
Source code in src/ai_metacognition/detectors/observer_effect.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 | |
__init__(window_size=1000, alert_threshold=2.0, feature_weights=None)
¶
Initialize the Observer Effect Monitor.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
window_size
|
int
|
Number of interactions to maintain in rolling window |
1000
|
alert_threshold
|
float
|
Minimum z-score to trigger alerts (default: 2.0) |
2.0
|
feature_weights
|
Optional[Dict[str, float]]
|
Optional weights for features in aggregate scoring |
None
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If parameters are invalid |
Source code in src/ai_metacognition/detectors/observer_effect.py
clear_alerts()
¶
detect(text)
¶
Detect patterns (BaseDetector compatibility).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
Input text to analyze |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Detection results |
Source code in src/ai_metacognition/detectors/observer_effect.py
get_alert_summary(severity_filter=None)
¶
Get summary of alerts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
severity_filter
|
Optional[AlertSeverity]
|
Optional filter by severity level |
None
|
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Summary of alerts |
Source code in src/ai_metacognition/detectors/observer_effect.py
get_divergence_report(time_window=None)
¶
Generate a comprehensive divergence report.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
time_window
|
Optional[int]
|
Optional time window in seconds (if None, use all data) |
None
|
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary containing divergence analysis |
Raises:
| Type | Description |
|---|---|
ValueError
|
If baseline not set or insufficient data |
Source code in src/ai_metacognition/detectors/observer_effect.py
log_production_interaction(interaction)
¶
Log a production interaction to the rolling window.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
interaction
|
Interaction
|
The interaction to log |
required |
Raises:
| Type | Description |
|---|---|
ValueError
|
If interaction is invalid |
Source code in src/ai_metacognition/detectors/observer_effect.py
register_alert_handler(handler)
¶
Register an alert notification handler.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
handler
|
AlertHandler
|
The alert handler to register |
required |
Source code in src/ai_metacognition/detectors/observer_effect.py
set_evaluation_baseline(eval_samples)
¶
Set baseline statistics from evaluation samples.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
eval_samples
|
List[str]
|
List of model responses from evaluation |
required |
Raises:
| Type | Description |
|---|---|
ValueError
|
If eval_samples is empty or invalid |
Source code in src/ai_metacognition/detectors/observer_effect.py
Alert¶
Alert
dataclass
¶
An alert triggered by divergence detection.
Attributes:
| Name | Type | Description |
|---|---|---|
timestamp |
datetime
|
When the alert was triggered |
feature |
str
|
The feature that diverged |
severity |
AlertSeverity
|
Alert severity level |
z_score |
float
|
The z-score that triggered the alert |
production_value |
float
|
Current production value |
baseline_value |
float
|
Evaluation baseline value |
recommendation |
str
|
Actionable recommendation |
trend |
Optional[str]
|
Recent trend information |
Source code in src/ai_metacognition/detectors/observer_effect.py
AlertSeverity¶
AlertSeverity
¶
Bases: Enum
Alert severity levels based on z-scores.
Source code in src/ai_metacognition/detectors/observer_effect.py
Interaction¶
Interaction
dataclass
¶
A production interaction to be monitored.
Attributes:
| Name | Type | Description |
|---|---|---|
timestamp |
datetime
|
When the interaction occurred |
response |
str
|
The model's response text |
refusal |
bool
|
Whether the model refused to respond |
tool_used |
bool
|
Whether tools were used |
reasoning_depth |
float
|
Depth of reasoning (0 if none) |
metadata |
Optional[Dict[str, Any]]
|
Additional metadata |
Source code in src/ai_metacognition/detectors/observer_effect.py
AlertHandler Protocol¶
AlertHandler
¶
ConsoleAlertHandler¶
ConsoleAlertHandler
¶
Simple console-based alert handler for demonstration.
Source code in src/ai_metacognition/detectors/observer_effect.py
handle_alert(alert)
¶
Print alert to console.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
alert
|
Alert
|
The alert to handle |
required |
Source code in src/ai_metacognition/detectors/observer_effect.py
Analyzers¶
CounterfactualCoTAnalyzer¶
CounterfactualCoTAnalyzer
¶
Bases: BaseAnalyzer
Analyzer for counterfactual chain-of-thought interventions.
This analyzer performs systematic interventions on reasoning traces to identify causal factors affecting model behavior. It parses reasoning chains, classifies reasoning types, performs interventions, and measures behavioral changes.
Attributes:
| Name | Type | Description |
|---|---|---|
model_api |
Interface to the model for re-running reasoning |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | |
__init__(model_api)
¶
Initialize the Counterfactual CoT Analyzer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_api
|
ModelAPI
|
Model interface implementing the ModelAPI protocol |
required |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
analyze(data)
¶
Analyze reasoning chains (BaseAnalyzer compatibility).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
List[str]
|
List of chain-of-thought texts |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with analysis results |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
counterfactual_intervention(original_cot, intervention_type)
¶
Perform counterfactual intervention on chain-of-thought.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
original_cot
|
str
|
Original chain-of-thought text |
required |
intervention_type
|
InterventionType
|
Type of intervention to perform |
required |
Returns:
| Type | Description |
|---|---|
str
|
Modified chain-of-thought text |
Raises:
| Type | Description |
|---|---|
ValueError
|
If original_cot is empty or intervention_type is invalid |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
get_intervention_types()
¶
Get list of available intervention types.
Returns:
| Type | Description |
|---|---|
List[str]
|
List of intervention type names |
parse_reasoning_chain(cot_text)
¶
Parse chain-of-thought into structured reasoning nodes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
cot_text
|
str
|
The chain-of-thought text to parse |
required |
Returns:
| Type | Description |
|---|---|
List[ReasoningNode]
|
List of ReasoningNode objects |
Raises:
| Type | Description |
|---|---|
ValueError
|
If cot_text is empty or invalid |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
systematic_causal_analysis(prompt, cot_text, original_output)
¶
Perform systematic causal analysis across all intervention types.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The original prompt/question |
required |
cot_text
|
str
|
Original chain-of-thought |
required |
original_output
|
str
|
Original model output |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with comprehensive causal analysis results |
Raises:
| Type | Description |
|---|---|
ValueError
|
If inputs are invalid |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | |
ModelAPI Protocol¶
ModelAPI
¶
Bases: Protocol
Protocol for model APIs used in counterfactual analysis.
Models implementing this protocol can be used with the CounterfactualCoTAnalyzer to re-run reasoning with interventions.
Source code in src/ai_metacognition/analyzers/model_api.py
generate(prompt)
¶
Generate output for a prompt without explicit chain-of-thought.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The prompt/question to answer |
required |
Returns:
| Type | Description |
|---|---|
str
|
The model's output/answer |
generate_with_cot(prompt, chain_of_thought)
¶
Generate output given a prompt and modified chain-of-thought.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The original prompt/question |
required |
chain_of_thought
|
str
|
The (potentially modified) chain-of-thought reasoning |
required |
Returns:
| Type | Description |
|---|---|
str
|
The model's output/answer based on the provided reasoning |
Source code in src/ai_metacognition/analyzers/model_api.py
InterventionType¶
InterventionType
¶
Bases: Enum
Types of counterfactual interventions.
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
ReasoningType¶
ReasoningType
¶
Bases: Enum
Types of reasoning nodes in chain-of-thought.
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
ReasoningNode¶
ReasoningNode
dataclass
¶
A node in the parsed chain-of-thought reasoning.
Attributes:
| Name | Type | Description |
|---|---|---|
text |
str
|
The text content of the reasoning step |
reasoning_type |
ReasoningType
|
The type of reasoning this node represents |
confidence |
float
|
Estimated confidence of the reasoning (0-1) |
index |
int
|
Position in the original reasoning chain |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
Utilities¶
Feature Extraction¶
extract_behavioral_features¶
extract_behavioral_features(text, cot=None, metadata=None)
¶
Extract comprehensive behavioral features from model output.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
The model's response text |
required |
cot
|
Optional[str]
|
Optional chain-of-thought reasoning |
None
|
metadata
|
Optional[Dict[str, Any]]
|
Optional metadata dictionary |
None
|
Returns:
| Type | Description |
|---|---|
Dict[str, float]
|
Dictionary mapping feature names to their values |
Raises:
| Type | Description |
|---|---|
ValueError
|
If text is empty or invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
count_hedging_phrases¶
count_hedging_phrases(text)
¶
Count hedging phrases and return normalized ratio.
Hedging phrases indicate uncertainty or lack of confidence in statements.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
Text to analyze |
required |
Returns:
| Type | Description |
|---|---|
float
|
Ratio of hedging phrases to total words (0.0 to 1.0) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If text is empty or invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
detect_meta_commentary¶
detect_meta_commentary(text)
¶
Detect patterns suggesting evaluation awareness or meta-commentary.
Meta-commentary includes references to the evaluation context, testing, or self-reflective statements about the model's own behavior.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
Text to analyze |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with: - detected: bool indicating if meta-commentary found - confidence: float confidence score (0.0 to 1.0) - count: int number of meta-commentary patterns found - patterns: list of matched patterns |
Raises:
| Type | Description |
|---|---|
ValueError
|
If text is invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | |
extract_reasoning_depth¶
extract_reasoning_depth(cot)
¶
Extract reasoning depth from chain-of-thought.
Reasoning depth is estimated by counting: - Numbered/bulleted steps - Logical connectors (therefore, thus, because) - Reasoning verbs (analyze, consider, evaluate) - Conditional statements (if/then)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
cot
|
str
|
Chain-of-thought text |
required |
Returns:
| Type | Description |
|---|---|
float
|
Estimated reasoning depth score (0.0+) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If cot is invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
compute_kl_divergence¶
compute_kl_divergence(dist1, dist2, epsilon=1e-10)
¶
Compute Kullback-Leibler divergence between two distributions.
KL(P||Q) measures how much information is lost when Q is used to approximate P. Returns divergence in nats (natural units).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dist1
|
Dict[str, float]
|
First distribution (P) as dictionary |
required |
dist2
|
Dict[str, float]
|
Second distribution (Q) as dictionary |
required |
epsilon
|
float
|
Small constant to avoid log(0) (default: 1e-10) |
1e-10
|
Returns:
| Type | Description |
|---|---|
float
|
KL divergence value (0.0+), higher means more divergent |
Raises:
| Type | Description |
|---|---|
ValueError
|
If distributions are empty or invalid |
ValueError
|
If distributions have different keys |
Notes
- Returns 0.0 if distributions are identical
- Handles missing keys by adding epsilon
- Normalizes distributions to sum to 1.0
Source code in src/ai_metacognition/utils/feature_extraction.py
compute_js_divergence¶
compute_js_divergence(dist1, dist2, epsilon=1e-10)
¶
Compute Jensen-Shannon divergence between two distributions.
JS divergence is a symmetric version of KL divergence: JS(P||Q) = 0.5 * KL(P||M) + 0.5 * KL(Q||M) where M = 0.5 * (P + Q)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dist1
|
Dict[str, float]
|
First distribution as dictionary |
required |
dist2
|
Dict[str, float]
|
Second distribution as dictionary |
required |
epsilon
|
float
|
Small constant to avoid log(0) |
1e-10
|
Returns:
| Type | Description |
|---|---|
float
|
JS divergence value (0.0 to 1.0), 0 means identical |
Raises:
| Type | Description |
|---|---|
ValueError
|
If distributions are invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
cosine_similarity¶
cosine_similarity(vec1, vec2)
¶
Compute cosine similarity between two feature vectors.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
vec1
|
Dict[str, float]
|
First feature vector as dictionary |
required |
vec2
|
Dict[str, float]
|
Second feature vector as dictionary |
required |
Returns:
| Type | Description |
|---|---|
float
|
Cosine similarity (-1.0 to 1.0), 1.0 means identical direction |
Raises:
| Type | Description |
|---|---|
ValueError
|
If vectors are empty or invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
normalize_distribution¶
normalize_distribution(dist)
¶
Normalize a distribution to sum to 1.0.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dist
|
Dict[str, float]
|
Distribution dictionary |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, float]
|
Normalized distribution |
Raises:
| Type | Description |
|---|---|
ValueError
|
If distribution is empty or has no positive values |
Source code in src/ai_metacognition/utils/feature_extraction.py
Statistical Tests¶
bayesian_update¶
bayesian_update(prior_alpha, prior_beta, evidence)
¶
Update Beta distribution priors with new evidence using Bayesian inference.
Uses the Beta-Binomial conjugate prior relationship where: - Prior: Beta(alpha, beta) - Likelihood: Binomial(successes, failures) - Posterior: Beta(alpha + successes, beta + failures)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prior_alpha
|
float
|
Alpha parameter of prior Beta distribution (must be > 0) |
required |
prior_beta
|
float
|
Beta parameter of prior Beta distribution (must be > 0) |
required |
evidence
|
Dict[str, int]
|
Dictionary with 'successes' and 'failures' counts |
required |
Returns:
| Type | Description |
|---|---|
Tuple[float, float]
|
Tuple of (posterior_alpha, posterior_beta) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If prior parameters are invalid |
ValueError
|
If evidence is missing required keys or has negative values |
TypeError
|
If evidence is not a dictionary |
Examples:
Source code in src/ai_metacognition/utils/statistical_tests.py
compute_confidence_interval¶
compute_confidence_interval(alpha, beta, confidence_level=0.95)
¶
Compute credible interval for Beta distribution.
Calculates the Bayesian credible interval (also called highest density interval) for a Beta distribution. This represents the range within which the true parameter lies with the specified probability.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
alpha
|
float
|
Alpha parameter of Beta distribution (must be > 0) |
required |
beta
|
float
|
Beta parameter of Beta distribution (must be > 0) |
required |
confidence_level
|
float
|
Confidence level (0 < confidence_level < 1, default: 0.95) |
0.95
|
Returns:
| Type | Description |
|---|---|
Tuple[float, float]
|
Tuple of (lower_bound, upper_bound) for the credible interval |
Raises:
| Type | Description |
|---|---|
ValueError
|
If alpha or beta are not positive |
ValueError
|
If confidence_level is not between 0 and 1 |
Examples:
>>> lower, upper = compute_confidence_interval(10, 10, 0.95)
>>> 0.3 < lower < 0.4 # Approximately 0.34
True
>>> 0.6 < upper < 0.7 # Approximately 0.66
True
Source code in src/ai_metacognition/utils/statistical_tests.py
z_score¶
z_score(value, mean, std)
¶
Calculate standardized z-score.
Computes how many standard deviations a value is from the mean. Handles edge cases like zero standard deviation gracefully.
Formula: z = (value - mean) / std
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
value
|
float
|
The observed value |
required |
mean
|
float
|
The mean of the distribution |
required |
std
|
float
|
The standard deviation of the distribution (must be >= 0) |
required |
Returns:
| Type | Description |
|---|---|
float
|
Z-score (number of standard deviations from mean) |
float
|
Returns 0.0 if std is 0 or very small (< 1e-10) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If std is negative |
ValueError
|
If any parameter is not numeric |
Examples:
Source code in src/ai_metacognition/utils/statistical_tests.py
assess_divergence_significance¶
assess_divergence_significance(z_score_value, threshold=2.0)
¶
Assess statistical significance of a divergence based on z-score.
Classifies the significance level of a divergence using standard deviation thresholds. Uses absolute value of z-score.
Significance levels: - NONE: |z| < threshold (typically < 2σ) - LOW: threshold <= |z| < threshold + 1 (2-3σ) - MEDIUM: threshold + 1 <= |z| < threshold + 2 (3-4σ) - HIGH: threshold + 2 <= |z| < threshold + 3 (4-5σ) - CRITICAL: |z| >= threshold + 3 (>5σ)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
z_score_value
|
float
|
The z-score to assess |
required |
threshold
|
float
|
Base threshold for significance (default: 2.0) |
2.0
|
Returns:
| Type | Description |
|---|---|
SignificanceLevel
|
SignificanceLevel enum indicating the level of significance |
Raises:
| Type | Description |
|---|---|
ValueError
|
If threshold is not positive |
ValueError
|
If z_score_value is not numeric |
Examples:
Source code in src/ai_metacognition/utils/statistical_tests.py
SignificanceLevel¶
SignificanceLevel
¶
Bases: Enum
Significance level classification for statistical tests.
Source code in src/ai_metacognition/utils/statistical_tests.py
compute_beta_mean¶
compute_beta_mean(alpha, beta)
¶
Compute mean of Beta distribution.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
alpha
|
float
|
Alpha parameter (must be > 0) |
required |
beta
|
float
|
Beta parameter (must be > 0) |
required |
Returns:
| Type | Description |
|---|---|
float
|
Mean of the Beta distribution: alpha / (alpha + beta) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If alpha or beta are not positive |
Source code in src/ai_metacognition/utils/statistical_tests.py
compute_beta_variance¶
compute_beta_variance(alpha, beta)
¶
Compute variance of Beta distribution.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
alpha
|
float
|
Alpha parameter (must be > 0) |
required |
beta
|
float
|
Beta parameter (must be > 0) |
required |
Returns:
| Type | Description |
|---|---|
float
|
Variance of the Beta distribution |
Raises:
| Type | Description |
|---|---|
ValueError
|
If alpha or beta are not positive |
Source code in src/ai_metacognition/utils/statistical_tests.py
beta_mode¶
beta_mode(alpha, beta)
¶
Compute mode of Beta distribution.
The mode is defined only when alpha, beta > 1.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
alpha
|
float
|
Alpha parameter (must be > 1 for mode to exist) |
required |
beta
|
float
|
Beta parameter (must be > 1 for mode to exist) |
required |
Returns:
| Type | Description |
|---|---|
float
|
Mode of the Beta distribution: (alpha - 1) / (alpha + beta - 2) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If alpha or beta are not greater than 1 |
Source code in src/ai_metacognition/utils/statistical_tests.py
Type Aliases¶
Common Types¶
from typing import Dict, List, Tuple, Optional, Any
# Feature dictionary
Features = Dict[str, float]
# Distribution
Distribution = Dict[str, float]
# Confidence interval
ConfidenceInterval = Tuple[float, float]
Constants¶
Default Values¶
# Bayesian priors
DEFAULT_ALPHA_PRIOR = 1.0
DEFAULT_BETA_PRIOR = 1.0
# Monitoring
DEFAULT_WINDOW_SIZE = 100
DEFAULT_ALERT_THRESHOLD = 2.5
# Statistical
DEFAULT_CONFIDENCE_LEVEL = 0.95
DEFAULT_EPSILON = 1e-10
Usage Examples¶
Import Patterns¶
# Import specific classes
from ai_metacognition.detectors import SituationalAwarenessDetector
from ai_metacognition.analyzers import CounterfactualCoTAnalyzer
from ai_metacognition.utils import extract_behavioral_features
# Import modules
from ai_metacognition import detectors, analyzers, utils
# Import all from submodule
from ai_metacognition.detectors import *
Type Checking¶
from typing import Protocol, runtime_checkable
from ai_metacognition.analyzers import ModelAPI
@runtime_checkable
class MyModel(Protocol):
def generate_with_cot(self, prompt: str, cot: str) -> str: ...
def generate(self, prompt: str) -> str: ...
# Check if implements protocol
assert isinstance(my_model, ModelAPI)
Integrations¶
AnthropicModelAPI¶
AnthropicModelAPI
¶
Anthropic Claude API implementation.
This class provides integration with Anthropic's Claude models for use in sandbagging detection experiments.
Attributes:
| Name | Type | Description |
|---|---|---|
model |
The Claude model to use (e.g., "claude-3-opus-20240229") |
|
max_tokens |
Maximum tokens to generate |
|
temperature |
Sampling temperature |
Example
api = AnthropicModelAPI(model="claude-3-sonnet-20240229") response = api.generate("What is 2+2?") print(response) "The answer is 4."
Source code in src/ai_metacognition/integrations/anthropic_api.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | |
__init__(model='claude-sonnet-4-20250514', max_tokens=1024, temperature=0.7, api_key=None)
¶
Initialize Anthropic API client.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model
|
str
|
Claude model identifier |
'claude-sonnet-4-20250514'
|
max_tokens
|
int
|
Maximum tokens to generate |
1024
|
temperature
|
float
|
Sampling temperature (0.0-1.0) |
0.7
|
api_key
|
Optional[str]
|
API key (defaults to ANTHROPIC_API_KEY env var) |
None
|
Raises:
| Type | Description |
|---|---|
ImportError
|
If anthropic package is not installed |
ValueError
|
If no API key is provided or found |
Source code in src/ai_metacognition/integrations/anthropic_api.py
generate(prompt, **kwargs)
¶
Generate a response from Claude.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The input prompt |
required |
**kwargs
|
Any
|
Additional parameters (temperature, max_tokens, system) |
{}
|
Returns:
| Type | Description |
|---|---|
str
|
The model's text response |
Source code in src/ai_metacognition/integrations/anthropic_api.py
generate_batch(prompts, **kwargs)
¶
Generate responses for multiple prompts.
Source code in src/ai_metacognition/integrations/anthropic_api.py
generate_with_perturbation(prompt, noise_level=0.1, **kwargs)
¶
Generate a response with noise injection.
Applies perturbation through: 1. Temperature scaling based on noise level 2. Optional prompt perturbation
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The input prompt |
required |
noise_level
|
float
|
Perturbation level (0.0-1.0) |
0.1
|
**kwargs
|
Any
|
Additional generation parameters |
{}
|
Returns:
| Type | Description |
|---|---|
str
|
The perturbed response |
Source code in src/ai_metacognition/integrations/anthropic_api.py
generate_with_response(prompt, **kwargs)
¶
Generate a response with full metadata.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The input prompt |
required |
**kwargs
|
Any
|
Additional parameters |
{}
|
Returns:
| Type | Description |
|---|---|
ModelResponse
|
ModelResponse with text and metadata |
Source code in src/ai_metacognition/integrations/anthropic_api.py
get_model_info()
¶
Get information about the configured model.
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with model metadata |
Source code in src/ai_metacognition/integrations/anthropic_api.py
OpenAIModelAPI¶
OpenAIModelAPI
¶
OpenAI GPT API implementation.
This class provides integration with OpenAI's GPT models for use in sandbagging detection experiments.
Attributes:
| Name | Type | Description |
|---|---|---|
model |
The GPT model to use (e.g., "gpt-4", "gpt-4-turbo") |
|
max_tokens |
Maximum tokens to generate |
|
temperature |
Sampling temperature |
Example
api = OpenAIModelAPI(model="gpt-4") response = api.generate("What is 2+2?") print(response) "The answer is 4."
Source code in src/ai_metacognition/integrations/openai_api.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | |
__init__(model='gpt-4', max_tokens=1024, temperature=0.7, api_key=None)
¶
Initialize OpenAI API client.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model
|
str
|
GPT model identifier |
'gpt-4'
|
max_tokens
|
int
|
Maximum tokens to generate |
1024
|
temperature
|
float
|
Sampling temperature (0.0-2.0) |
0.7
|
api_key
|
Optional[str]
|
API key (defaults to OPENAI_API_KEY env var) |
None
|
Raises:
| Type | Description |
|---|---|
ImportError
|
If openai package is not installed |
ValueError
|
If no API key is provided or found |
Source code in src/ai_metacognition/integrations/openai_api.py
generate(prompt, **kwargs)
¶
Generate a response from GPT.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The input prompt |
required |
**kwargs
|
Any
|
Additional parameters (temperature, max_tokens, system) |
{}
|
Returns:
| Type | Description |
|---|---|
str
|
The model's text response |
Source code in src/ai_metacognition/integrations/openai_api.py
generate_batch(prompts, **kwargs)
¶
generate_with_logprobs(prompt, **kwargs)
¶
Generate a response with token log probabilities.
Useful for analyzing model confidence and detecting unusual token distributions that may indicate sandbagging.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The input prompt |
required |
**kwargs
|
Any
|
Additional parameters |
{}
|
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with text and log probabilities |
Source code in src/ai_metacognition/integrations/openai_api.py
generate_with_perturbation(prompt, noise_level=0.1, **kwargs)
¶
Generate a response with noise injection.
Applies perturbation through: 1. Temperature scaling based on noise level 2. Optional prompt perturbation 3. Top-p sampling adjustment
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The input prompt |
required |
noise_level
|
float
|
Perturbation level (0.0-1.0) |
0.1
|
**kwargs
|
Any
|
Additional generation parameters |
{}
|
Returns:
| Type | Description |
|---|---|
str
|
The perturbed response |
Source code in src/ai_metacognition/integrations/openai_api.py
generate_with_response(prompt, **kwargs)
¶
Generate a response with full metadata.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The input prompt |
required |
**kwargs
|
Any
|
Additional parameters |
{}
|
Returns:
| Type | Description |
|---|---|
ModelResponse
|
ModelResponse with text and metadata |
Source code in src/ai_metacognition/integrations/openai_api.py
get_model_info()
¶
Get information about the configured model.
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with model metadata |