API Reference¶
Complete API documentation for the AI Metacognition Toolkit.
Detectors¶
SituationalAwarenessDetector¶
SituationalAwarenessDetector
¶
Bases: BaseDetector
Detect situational awareness in AI model outputs using Bayesian inference.
This detector uses Bayesian inference to identify when models recognize evaluation contexts by analyzing behavioral features and computing divergence metrics between test and baseline distributions.
Attributes:
| Name | Type | Description |
|---|---|---|
baseline_samples |
Baseline model outputs for comparison |
|
alpha_prior |
Alpha parameter for Beta prior distribution |
|
beta_prior |
Beta parameter for Beta prior distribution |
|
baseline_features |
List[Dict[str, float]]
|
Extracted features from baseline samples |
baseline_distribution |
Dict[str, Dict[str, float]]
|
Computed baseline feature distribution |
fitted |
Whether the detector has been fitted to baseline data |
Source code in src/ai_metacognition/detectors/situational_awareness.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 | |
__init__(baseline_samples=None, alpha_prior=1.0, beta_prior=1.0)
¶
Initialize the Situational Awareness Detector.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
baseline_samples
|
Optional[List[str]]
|
List of baseline model outputs (normal interactions) |
None
|
alpha_prior
|
float
|
Alpha parameter for Beta prior (default: 1.0 for uniform) |
1.0
|
beta_prior
|
float
|
Beta parameter for Beta prior (default: 1.0 for uniform) |
1.0
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If prior parameters are not positive |
Source code in src/ai_metacognition/detectors/situational_awareness.py
detect(text)
¶
Detect metacognitive patterns (compatibility method).
This method provides compatibility with the BaseDetector interface. For full functionality, use detect_awareness() instead.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
The input text to analyze |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with detection results |
Source code in src/ai_metacognition/detectors/situational_awareness.py
detect_awareness(test_output, test_context=None)
¶
Detect situational awareness in test output using Bayesian inference.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
test_output
|
str
|
The model output to analyze |
required |
test_context
|
Optional[str]
|
Optional context information |
None
|
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary containing: - awareness_probability: Float between 0 and 1 - confidence_interval: Tuple of (lower, upper) bounds - evidence: Dictionary with supporting metrics - features: Extracted features from the output - kl_divergence: KL divergence from baseline |
Raises:
| Type | Description |
|---|---|
ValueError
|
If detector has not been fitted |
ValueError
|
If test_output is empty or invalid |
Source code in src/ai_metacognition/detectors/situational_awareness.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 | |
fit_baseline(model_outputs, contexts=None)
¶
Fit the baseline distribution from normal model interactions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_outputs
|
List[str]
|
List of model outputs from normal interactions |
required |
contexts
|
Optional[List[str]]
|
Optional context information for each output |
None
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If model_outputs is empty or contains invalid data |
Source code in src/ai_metacognition/detectors/situational_awareness.py
get_baseline_summary()
¶
Get summary statistics of the baseline distribution.
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with baseline statistics |
Raises:
| Type | Description |
|---|---|
ValueError
|
If detector has not been fitted |
Source code in src/ai_metacognition/detectors/situational_awareness.py
ObserverEffectMonitor¶
ObserverEffectMonitor
¶
Bases: BaseDetector
Monitor for detecting observer effects in production deployments.
This monitor tracks behavioral features in a rolling window and compares them to evaluation baselines to detect when models behave differently in production contexts.
Attributes:
| Name | Type | Description |
|---|---|---|
window_size |
Size of rolling window for statistics |
|
alert_threshold |
Minimum z-score to trigger alerts |
|
feature_weights |
Weights for different features |
|
evaluation_baseline |
Dict[str, Dict[str, float]]
|
Baseline statistics from evaluation |
production_window |
deque
|
Rolling window of production interactions |
alerts |
List[Alert]
|
List of triggered alerts |
alert_handlers |
List[AlertHandler]
|
List of registered alert handlers |
Source code in src/ai_metacognition/detectors/observer_effect.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 | |
__init__(window_size=1000, alert_threshold=2.0, feature_weights=None)
¶
Initialize the Observer Effect Monitor.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
window_size
|
int
|
Number of interactions to maintain in rolling window |
1000
|
alert_threshold
|
float
|
Minimum z-score to trigger alerts (default: 2.0) |
2.0
|
feature_weights
|
Optional[Dict[str, float]]
|
Optional weights for features in aggregate scoring |
None
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If parameters are invalid |
Source code in src/ai_metacognition/detectors/observer_effect.py
clear_alerts()
¶
detect(text)
¶
Detect patterns (BaseDetector compatibility).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
Input text to analyze |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Detection results |
Source code in src/ai_metacognition/detectors/observer_effect.py
get_alert_summary(severity_filter=None)
¶
Get summary of alerts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
severity_filter
|
Optional[AlertSeverity]
|
Optional filter by severity level |
None
|
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Summary of alerts |
Source code in src/ai_metacognition/detectors/observer_effect.py
get_divergence_report(time_window=None)
¶
Generate a comprehensive divergence report.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
time_window
|
Optional[int]
|
Optional time window in seconds (if None, use all data) |
None
|
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary containing divergence analysis |
Raises:
| Type | Description |
|---|---|
ValueError
|
If baseline not set or insufficient data |
Source code in src/ai_metacognition/detectors/observer_effect.py
log_production_interaction(interaction)
¶
Log a production interaction to the rolling window.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
interaction
|
Interaction
|
The interaction to log |
required |
Raises:
| Type | Description |
|---|---|
ValueError
|
If interaction is invalid |
Source code in src/ai_metacognition/detectors/observer_effect.py
register_alert_handler(handler)
¶
Register an alert notification handler.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
handler
|
AlertHandler
|
The alert handler to register |
required |
Source code in src/ai_metacognition/detectors/observer_effect.py
set_evaluation_baseline(eval_samples)
¶
Set baseline statistics from evaluation samples.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
eval_samples
|
List[str]
|
List of model responses from evaluation |
required |
Raises:
| Type | Description |
|---|---|
ValueError
|
If eval_samples is empty or invalid |
Source code in src/ai_metacognition/detectors/observer_effect.py
Alert¶
Alert
dataclass
¶
An alert triggered by divergence detection.
Attributes:
| Name | Type | Description |
|---|---|---|
timestamp |
datetime
|
When the alert was triggered |
feature |
str
|
The feature that diverged |
severity |
AlertSeverity
|
Alert severity level |
z_score |
float
|
The z-score that triggered the alert |
production_value |
float
|
Current production value |
baseline_value |
float
|
Evaluation baseline value |
recommendation |
str
|
Actionable recommendation |
trend |
Optional[str]
|
Recent trend information |
Source code in src/ai_metacognition/detectors/observer_effect.py
AlertSeverity¶
AlertSeverity
¶
Bases: Enum
Alert severity levels based on z-scores.
Source code in src/ai_metacognition/detectors/observer_effect.py
Interaction¶
Interaction
dataclass
¶
A production interaction to be monitored.
Attributes:
| Name | Type | Description |
|---|---|---|
timestamp |
datetime
|
When the interaction occurred |
response |
str
|
The model's response text |
refusal |
bool
|
Whether the model refused to respond |
tool_used |
bool
|
Whether tools were used |
reasoning_depth |
float
|
Depth of reasoning (0 if none) |
metadata |
Optional[Dict[str, Any]]
|
Additional metadata |
Source code in src/ai_metacognition/detectors/observer_effect.py
AlertHandler Protocol¶
AlertHandler
¶
ConsoleAlertHandler¶
ConsoleAlertHandler
¶
Simple console-based alert handler for demonstration.
Source code in src/ai_metacognition/detectors/observer_effect.py
handle_alert(alert)
¶
Print alert to console.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
alert
|
Alert
|
The alert to handle |
required |
Source code in src/ai_metacognition/detectors/observer_effect.py
Analyzers¶
CounterfactualCoTAnalyzer¶
CounterfactualCoTAnalyzer
¶
Bases: BaseAnalyzer
Analyzer for counterfactual chain-of-thought interventions.
This analyzer performs systematic interventions on reasoning traces to identify causal factors affecting model behavior. It parses reasoning chains, classifies reasoning types, performs interventions, and measures behavioral changes.
Attributes:
| Name | Type | Description |
|---|---|---|
model_api |
Interface to the model for re-running reasoning |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 | |
__init__(model_api)
¶
Initialize the Counterfactual CoT Analyzer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_api
|
ModelAPI
|
Model interface implementing the ModelAPI protocol |
required |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
analyze(data)
¶
Analyze reasoning chains (BaseAnalyzer compatibility).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data
|
List[str]
|
List of chain-of-thought texts |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with analysis results |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
counterfactual_intervention(original_cot, intervention_type)
¶
Perform counterfactual intervention on chain-of-thought.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
original_cot
|
str
|
Original chain-of-thought text |
required |
intervention_type
|
InterventionType
|
Type of intervention to perform |
required |
Returns:
| Type | Description |
|---|---|
str
|
Modified chain-of-thought text |
Raises:
| Type | Description |
|---|---|
ValueError
|
If original_cot is empty or intervention_type is invalid |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
get_intervention_types()
¶
Get list of available intervention types.
Returns:
| Type | Description |
|---|---|
List[str]
|
List of intervention type names |
parse_reasoning_chain(cot_text)
¶
Parse chain-of-thought into structured reasoning nodes.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
cot_text
|
str
|
The chain-of-thought text to parse |
required |
Returns:
| Type | Description |
|---|---|
List[ReasoningNode]
|
List of ReasoningNode objects |
Raises:
| Type | Description |
|---|---|
ValueError
|
If cot_text is empty or invalid |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
systematic_causal_analysis(prompt, cot_text, original_output)
¶
Perform systematic causal analysis across all intervention types.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The original prompt/question |
required |
cot_text
|
str
|
Original chain-of-thought |
required |
original_output
|
str
|
Original model output |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with comprehensive causal analysis results |
Raises:
| Type | Description |
|---|---|
ValueError
|
If inputs are invalid |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 | |
ModelAPI Protocol¶
ModelAPI
¶
Bases: Protocol
Protocol for model APIs used in counterfactual analysis.
Models implementing this protocol can be used with the CounterfactualCoTAnalyzer to re-run reasoning with interventions.
Source code in src/ai_metacognition/analyzers/model_api.py
generate(prompt)
¶
Generate output for a prompt without explicit chain-of-thought.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The prompt/question to answer |
required |
Returns:
| Type | Description |
|---|---|
str
|
The model's output/answer |
generate_with_cot(prompt, chain_of_thought)
¶
Generate output given a prompt and modified chain-of-thought.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
str
|
The original prompt/question |
required |
chain_of_thought
|
str
|
The (potentially modified) chain-of-thought reasoning |
required |
Returns:
| Type | Description |
|---|---|
str
|
The model's output/answer based on the provided reasoning |
Source code in src/ai_metacognition/analyzers/model_api.py
InterventionType¶
InterventionType
¶
Bases: Enum
Types of counterfactual interventions.
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
ReasoningType¶
ReasoningType
¶
Bases: Enum
Types of reasoning nodes in chain-of-thought.
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
ReasoningNode¶
ReasoningNode
dataclass
¶
A node in the parsed chain-of-thought reasoning.
Attributes:
| Name | Type | Description |
|---|---|---|
text |
str
|
The text content of the reasoning step |
reasoning_type |
ReasoningType
|
The type of reasoning this node represents |
confidence |
float
|
Estimated confidence of the reasoning (0-1) |
index |
int
|
Position in the original reasoning chain |
Source code in src/ai_metacognition/analyzers/counterfactual_cot.py
Utilities¶
Feature Extraction¶
extract_behavioral_features¶
extract_behavioral_features(text, cot=None, metadata=None)
¶
Extract comprehensive behavioral features from model output.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
The model's response text |
required |
cot
|
Optional[str]
|
Optional chain-of-thought reasoning |
None
|
metadata
|
Optional[Dict[str, Any]]
|
Optional metadata dictionary |
None
|
Returns:
| Type | Description |
|---|---|
Dict[str, float]
|
Dictionary mapping feature names to their values |
Raises:
| Type | Description |
|---|---|
ValueError
|
If text is empty or invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
count_hedging_phrases¶
count_hedging_phrases(text)
¶
Count hedging phrases and return normalized ratio.
Hedging phrases indicate uncertainty or lack of confidence in statements.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
Text to analyze |
required |
Returns:
| Type | Description |
|---|---|
float
|
Ratio of hedging phrases to total words (0.0 to 1.0) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If text is empty or invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
detect_meta_commentary¶
detect_meta_commentary(text)
¶
Detect patterns suggesting evaluation awareness or meta-commentary.
Meta-commentary includes references to the evaluation context, testing, or self-reflective statements about the model's own behavior.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
Text to analyze |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, Any]
|
Dictionary with: - detected: bool indicating if meta-commentary found - confidence: float confidence score (0.0 to 1.0) - count: int number of meta-commentary patterns found - patterns: list of matched patterns |
Raises:
| Type | Description |
|---|---|
ValueError
|
If text is invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | |
extract_reasoning_depth¶
extract_reasoning_depth(cot)
¶
Extract reasoning depth from chain-of-thought.
Reasoning depth is estimated by counting: - Numbered/bulleted steps - Logical connectors (therefore, thus, because) - Reasoning verbs (analyze, consider, evaluate) - Conditional statements (if/then)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
cot
|
str
|
Chain-of-thought text |
required |
Returns:
| Type | Description |
|---|---|
float
|
Estimated reasoning depth score (0.0+) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If cot is invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
compute_kl_divergence¶
compute_kl_divergence(dist1, dist2, epsilon=1e-10)
¶
Compute Kullback-Leibler divergence between two distributions.
KL(P||Q) measures how much information is lost when Q is used to approximate P. Returns divergence in nats (natural units).
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dist1
|
Dict[str, float]
|
First distribution (P) as dictionary |
required |
dist2
|
Dict[str, float]
|
Second distribution (Q) as dictionary |
required |
epsilon
|
float
|
Small constant to avoid log(0) (default: 1e-10) |
1e-10
|
Returns:
| Type | Description |
|---|---|
float
|
KL divergence value (0.0+), higher means more divergent |
Raises:
| Type | Description |
|---|---|
ValueError
|
If distributions are empty or invalid |
ValueError
|
If distributions have different keys |
Notes
- Returns 0.0 if distributions are identical
- Handles missing keys by adding epsilon
- Normalizes distributions to sum to 1.0
Source code in src/ai_metacognition/utils/feature_extraction.py
compute_js_divergence¶
compute_js_divergence(dist1, dist2, epsilon=1e-10)
¶
Compute Jensen-Shannon divergence between two distributions.
JS divergence is a symmetric version of KL divergence: JS(P||Q) = 0.5 * KL(P||M) + 0.5 * KL(Q||M) where M = 0.5 * (P + Q)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dist1
|
Dict[str, float]
|
First distribution as dictionary |
required |
dist2
|
Dict[str, float]
|
Second distribution as dictionary |
required |
epsilon
|
float
|
Small constant to avoid log(0) |
1e-10
|
Returns:
| Type | Description |
|---|---|
float
|
JS divergence value (0.0 to 1.0), 0 means identical |
Raises:
| Type | Description |
|---|---|
ValueError
|
If distributions are invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
cosine_similarity¶
cosine_similarity(vec1, vec2)
¶
Compute cosine similarity between two feature vectors.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
vec1
|
Dict[str, float]
|
First feature vector as dictionary |
required |
vec2
|
Dict[str, float]
|
Second feature vector as dictionary |
required |
Returns:
| Type | Description |
|---|---|
float
|
Cosine similarity (-1.0 to 1.0), 1.0 means identical direction |
Raises:
| Type | Description |
|---|---|
ValueError
|
If vectors are empty or invalid |
Source code in src/ai_metacognition/utils/feature_extraction.py
normalize_distribution¶
normalize_distribution(dist)
¶
Normalize a distribution to sum to 1.0.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dist
|
Dict[str, float]
|
Distribution dictionary |
required |
Returns:
| Type | Description |
|---|---|
Dict[str, float]
|
Normalized distribution |
Raises:
| Type | Description |
|---|---|
ValueError
|
If distribution is empty or has no positive values |
Source code in src/ai_metacognition/utils/feature_extraction.py
Statistical Tests¶
bayesian_update¶
bayesian_update(prior_alpha, prior_beta, evidence)
¶
Update Beta distribution priors with new evidence using Bayesian inference.
Uses the Beta-Binomial conjugate prior relationship where: - Prior: Beta(alpha, beta) - Likelihood: Binomial(successes, failures) - Posterior: Beta(alpha + successes, beta + failures)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prior_alpha
|
float
|
Alpha parameter of prior Beta distribution (must be > 0) |
required |
prior_beta
|
float
|
Beta parameter of prior Beta distribution (must be > 0) |
required |
evidence
|
Dict[str, int]
|
Dictionary with 'successes' and 'failures' counts |
required |
Returns:
| Type | Description |
|---|---|
Tuple[float, float]
|
Tuple of (posterior_alpha, posterior_beta) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If prior parameters are invalid |
ValueError
|
If evidence is missing required keys or has negative values |
TypeError
|
If evidence is not a dictionary |
Examples:
Source code in src/ai_metacognition/utils/statistical_tests.py
compute_confidence_interval¶
compute_confidence_interval(alpha, beta, confidence_level=0.95)
¶
Compute credible interval for Beta distribution.
Calculates the Bayesian credible interval (also called highest density interval) for a Beta distribution. This represents the range within which the true parameter lies with the specified probability.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
alpha
|
float
|
Alpha parameter of Beta distribution (must be > 0) |
required |
beta
|
float
|
Beta parameter of Beta distribution (must be > 0) |
required |
confidence_level
|
float
|
Confidence level (0 < confidence_level < 1, default: 0.95) |
0.95
|
Returns:
| Type | Description |
|---|---|
Tuple[float, float]
|
Tuple of (lower_bound, upper_bound) for the credible interval |
Raises:
| Type | Description |
|---|---|
ValueError
|
If alpha or beta are not positive |
ValueError
|
If confidence_level is not between 0 and 1 |
Examples:
>>> lower, upper = compute_confidence_interval(10, 10, 0.95)
>>> 0.3 < lower < 0.4 # Approximately 0.34
True
>>> 0.6 < upper < 0.7 # Approximately 0.66
True
Source code in src/ai_metacognition/utils/statistical_tests.py
z_score¶
z_score(value, mean, std)
¶
Calculate standardized z-score.
Computes how many standard deviations a value is from the mean. Handles edge cases like zero standard deviation gracefully.
Formula: z = (value - mean) / std
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
value
|
float
|
The observed value |
required |
mean
|
float
|
The mean of the distribution |
required |
std
|
float
|
The standard deviation of the distribution (must be >= 0) |
required |
Returns:
| Type | Description |
|---|---|
float
|
Z-score (number of standard deviations from mean) |
float
|
Returns 0.0 if std is 0 or very small (< 1e-10) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If std is negative |
ValueError
|
If any parameter is not numeric |
Examples:
Source code in src/ai_metacognition/utils/statistical_tests.py
assess_divergence_significance¶
assess_divergence_significance(z_score_value, threshold=2.0)
¶
Assess statistical significance of a divergence based on z-score.
Classifies the significance level of a divergence using standard deviation thresholds. Uses absolute value of z-score.
Significance levels: - NONE: |z| < threshold (typically < 2σ) - LOW: threshold <= |z| < threshold + 1 (2-3σ) - MEDIUM: threshold + 1 <= |z| < threshold + 2 (3-4σ) - HIGH: threshold + 2 <= |z| < threshold + 3 (4-5σ) - CRITICAL: |z| >= threshold + 3 (>5σ)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
z_score_value
|
float
|
The z-score to assess |
required |
threshold
|
float
|
Base threshold for significance (default: 2.0) |
2.0
|
Returns:
| Type | Description |
|---|---|
SignificanceLevel
|
SignificanceLevel enum indicating the level of significance |
Raises:
| Type | Description |
|---|---|
ValueError
|
If threshold is not positive |
ValueError
|
If z_score_value is not numeric |
Examples:
Source code in src/ai_metacognition/utils/statistical_tests.py
SignificanceLevel¶
SignificanceLevel
¶
Bases: Enum
Significance level classification for statistical tests.
Source code in src/ai_metacognition/utils/statistical_tests.py
compute_beta_mean¶
compute_beta_mean(alpha, beta)
¶
Compute mean of Beta distribution.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
alpha
|
float
|
Alpha parameter (must be > 0) |
required |
beta
|
float
|
Beta parameter (must be > 0) |
required |
Returns:
| Type | Description |
|---|---|
float
|
Mean of the Beta distribution: alpha / (alpha + beta) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If alpha or beta are not positive |
Source code in src/ai_metacognition/utils/statistical_tests.py
compute_beta_variance¶
compute_beta_variance(alpha, beta)
¶
Compute variance of Beta distribution.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
alpha
|
float
|
Alpha parameter (must be > 0) |
required |
beta
|
float
|
Beta parameter (must be > 0) |
required |
Returns:
| Type | Description |
|---|---|
float
|
Variance of the Beta distribution |
Raises:
| Type | Description |
|---|---|
ValueError
|
If alpha or beta are not positive |
Source code in src/ai_metacognition/utils/statistical_tests.py
beta_mode¶
beta_mode(alpha, beta)
¶
Compute mode of Beta distribution.
The mode is defined only when alpha, beta > 1.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
alpha
|
float
|
Alpha parameter (must be > 1 for mode to exist) |
required |
beta
|
float
|
Beta parameter (must be > 1 for mode to exist) |
required |
Returns:
| Type | Description |
|---|---|
float
|
Mode of the Beta distribution: (alpha - 1) / (alpha + beta - 2) |
Raises:
| Type | Description |
|---|---|
ValueError
|
If alpha or beta are not greater than 1 |
Source code in src/ai_metacognition/utils/statistical_tests.py
Type Aliases¶
Common Types¶
from typing import Dict, List, Tuple, Optional, Any
# Feature dictionary
Features = Dict[str, float]
# Distribution
Distribution = Dict[str, float]
# Confidence interval
ConfidenceInterval = Tuple[float, float]
Constants¶
Default Values¶
# Bayesian priors
DEFAULT_ALPHA_PRIOR = 1.0
DEFAULT_BETA_PRIOR = 1.0
# Monitoring
DEFAULT_WINDOW_SIZE = 100
DEFAULT_ALERT_THRESHOLD = 2.5
# Statistical
DEFAULT_CONFIDENCE_LEVEL = 0.95
DEFAULT_EPSILON = 1e-10
Usage Examples¶
Import Patterns¶
# Import specific classes
from ai_metacognition.detectors import SituationalAwarenessDetector
from ai_metacognition.analyzers import CounterfactualCoTAnalyzer
from ai_metacognition.utils import extract_behavioral_features
# Import modules
from ai_metacognition import detectors, analyzers, utils
# Import all from submodule
from ai_metacognition.detectors import *
Type Checking¶
from typing import Protocol, runtime_checkable
from ai_metacognition.analyzers import ModelAPI
@runtime_checkable
class MyModel(Protocol):
def generate_with_cot(self, prompt: str, cot: str) -> str: ...
def generate(self, prompt: str) -> str: ...
# Check if implements protocol
assert isinstance(my_model, ModelAPI)